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Abstract — We present a nevel Finite Difference Time
Domain (FDTD) model of tramsient wave propagation in
general dispersive bi-isotropic media with losses. The special
properties of these materials may lead to new applications in
microwave and millimeter-wave technology. While their
frequency domain properties have been well described in the
literature, their time domain behavior has only been modeled
so far for special sub-classes and monochromatic time
dependence. We have validated our method by first
computing time-harmonic wave propagation through a bi-
isotropic medium and comparing it with theoretical results.
Agreement is typically better than one percent. Then we have
computed transient field propagation in a general dispersive
bi-isotropic medium.

I, INTRODUCTION

In contrast to ordinary materials characterized by elec-
tric permittivity and magnetic permeability, bi-isotropic
materials present two additional parameters in their con-
stitutive equations, namely the Tellegen and chirality pa-
rameters, that relate the electric field E with the magnetic
flux density B, and the magnetic ficld H with the electric
displacement D. Electromagnetic waves in bi-isotropic
media show the following interesting behavior [1]:

a) Optical Rotatory Dispersion causing a rotation of
polarization;

b) Circular Dichroism, which modifies the nature of
field polarization;

¢) Non-orthogonality of electric and magnetic field
vectors.

These properties have drawn considerable attention to
bi-isotropic media due to their potential applications. Two
subclasses of general bi-isotropic media are Tellegen and
chiral media, in which only one of these two parameters is
taken into account in the constitutive equations. Many
attempts have been made to model bi-isotropic media in
time domain [2]-[3], and good results have been obtained
for special cases, such as chiral media or non-dispersive
bi-isotropic media. However, no time domain formulation
has been developed to date that models general bi-

isotropic dispersive media with losses. In this paper, a full
time-domain model of general bi-isotropic dispersive
media is proposed. It is based on the FDTD technique,
where the basic Yee cell has been modified to include the
special relationships between the field vectors in bi-
isotropic media. To validate our method we have
computéd the characteristic  behavior of both
menochromatic and  transient electromagnetic waves
traveling through a bi-isotropic medium and obtained with
very good agreement with the theoretical results.

I1. TIME DOMAIN UPDATE CONSTITUTIVE EQUATIONS

The constitutive equations for bi-isotropic media in
frequency demain are given by [1]:

D) = (@) + oot (2 — il () (1)
B(w) = (@) + et (2 + jrte))E@)
where y is the Tellegen parameter and «(w) is the chirality
parameter. The frequency dependence of the chirality
parameter is assumed to follow the Condon model [1]:
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where oy, 1s a characieristic resonant frequency, 7 a time
constant and £ the damping factor.

In order to obtain a time domain expression for the
chirality parameter, the imaginary unit that appears in the
constitutive equations (1} is introduced in the chirality
parameter expression (2), and the time-dependent chirality
parameter is obtained by inverse Laplace transform:
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where «’(@) is defined as «’(w) = x(w) and the angle gis

defined as g=acos(&).

In time domain the refationship given in eq. (1) becomes
a convolution. If we discretize these equations and make
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the approximation that all the field quantities are constant
over each discrete time interval, and if we assume that all
fields are zero for #<(, then the integration becomes, in
part, a summation:
- - P | = mena
Din)=eE(m)+Z=H(m)—— > Hin—m) x'(7)dr
% % E ["” “)
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The form of the chirality parameter «’z) does not allow
recursive updating of the discrete convolution. However,
following the procedure of Luebbers and Hunsberger [4],

we define a complex time domain chirality:
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The exponential form of the complex chirality now
makes it suitable for recursive convolution, Details are
found in [4] and will not be repeated here. We obtain the
following final time domain constitutive update equations;
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~where “g(ny denotes the complex convolution summation
of the electric field with the complex chiral response of
the material to an impulse, at the instant #Af.

III. NEW FDTD FORMULATION

In erder to model bi-isotropic media, we have modified
the traditional FDTD method. Although we present in this
paper only the implementation of a 1-D mesh and
algorithm, this formulation can be extended to the 2-D and
3-D cases as well. We assume uniform wave propagation
in the z-direction. In order to capture the rotation of the

" fields (caused by the chirality parameter) and their non-
orthogoenality (caused by the Tellegen parameter) in the
transversal plane, we model the x- and y-components of
both the electric and magnetic fields.

The peculiar constitutive equations of bi-isotropic
media that relate the electric and magnetic fields in the
same point and at the same time instant, require a
modification of the Yee cell and the traditional FDTD
algorithm. Our new cell includes four quantities in each
node, namely E, D, H and B, related by the constitutive
equations, and we have two different kinds of nodes, the
x-nodes where we define the x-components of the fields
(E. D, H, B, and the y-nodes with the y-components

(E,, Dy H,, B,). Fig. | shows the x- and y-nodes staggered
in space and time.
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Fig. 1.  Modified FD'TD mesh for bi-isotropic media

We have introduced losses in the algorithm by using the
perturbation method for small losses. First, we update the
x-components of D and B everywhere in the mesh by
means of the lossless standard FDTD update equations,
then, within the same time step, the x-components of E
and H are calculated using the x-component of the vector
constitutive equations in time domain (7) derived above:
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Once we know E, and H, in the absence of losses, we
recalculate D, and B, from the time average value of each
field, using again standard FDTD equations, this time
accounting for losses by considering small electric and
magnetic conductivities. These must be small enough to
justify the assumption that £; and A, do not change
significantly from their values in the lossless case. Finally
we compute E; and A, for the case of small losses using
the x-component of the constitutive equations given in (8),
At one half time step later, the y-components of D and B
are compuied using the same standard FDTD update
equations in the absence of losses, at the same time step,
we calculate the y-components of F and H using the y-
component of the vector constitutive equations that relates
the quantities in our y-node:
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As we did in the case of the x-components, once we
know E, and H, in the absence of losses, we recalculate D,
and B, from the time-average value of each field, using
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again standard FDTD equations and accounting for losses
due to small electric and magnetic conductivities, Finally
we compute £, and A, for the lossy case using the y-
component of the vector constitutive equations (9),

IV. RESULTS

To validate our formulation we have first computed the
characteristic behavior of a monochromatic electromag-
netic wave traveling through a bi-isotropic medium, so
that we could compare our results with frequency domain
theoretical behavior of waves in bi-isotropic media [1].
After this preliminary validation, we have performed
numerical pulse propagation experiments and modeled the
first transient wave propagation in such a medium,

A. Validation of Monochromatic Wave Propagation in Bi-
Isotropic Media

As mentioned in the introduction, electromagnetic
waves In bi-isotropic media exhibit the following
properties [1]: ' .

Optical Rotatory Dispersion causes a rotation of
polarization due to different phase velocities of the right-
and left-handed circularly polarized waves. The angle of
rotation depends on the real part of the chirality
parameter.

Circular Dichroism modifies polarization by introduc-
ing ellipticity. It is due to the different absorption coeffi-
cients of the right- and lefi-handed circularly polarized
waves. Depends on the imaginary part of the chirality.

Non-orthogonality of electric and magnetic field
vectors due to the non-zero Tellegen parameter.

We performed all simulations in a 1-D computational
domain that was 10,000 cells (Az = 1/3 mm) long, and
applied the excitation at the point 4000 Az. The mesh
boundaries were remote enough to avoid possible
reflections.

In the first simulation the parameters of the medium
were: =1, 6=2 y=0, r=4ps, ay=27x 1 rad/s. To
allow comparison with analytical frequency domain
results we injected a time-harmonic electric field (f = 3
GHz) linearly polarized at 45 degrees with respect to the
x- and y-axes. Both the lossless and the lossy case were
considered. At 3 GHz, and in the absence of losses (£=(0),
the value of the chirality is x = - 9.42 -10-3+j0. Since the
imaginary part of the chirality is zero, the wave preserves
its linear polarization, but due to the negative value of the
real part of the chirality parameier, the polarization rotates
clockwise when looking in the direction of propagation
(+z direction). The rotatory property of the medium for
the flossless case is shown in Fig 2. In the lossy case (&=0,
,=1.5 107 Sim, 0,,=1.5 10° ) at 3 GHz, the value of

- 1 Optical Activity.

the chirality is x = -8.97-10°-j2.01810°. Due to the non-
zero imaginary part of the chirality the linear polarization
of the fields degenerates into elliptical polarization as they
propagate (dichroism). Since Re(x)<0 the polarization
direction rotates clockwise. The rotatory property and
circular dichroism of the medium are visualized in Fig. 3.

Fig. 2.  Polarization of the electric field at 3000 ps. The
direction of polarization rotates clockwise as the wave
propagates through the lossless bi-isotropic medium.

The theoretical and computed values of the rotation
angle at 15004z and 30004z (Az=1/3 mm) are compared
in Table 1

TABLE 1
Theoretical and simulated angles of rotation of the polarization.
Distance to | Theoretical | Computed Error in
the Source Angle Angle Percent
1500Az 16.965 17.127 +0.95
3000Az 33.929 +0.67

ity and Circulat Dichioisr:
Sowg B ¥

Fig. 3. Rotation of the polarization and circular dichroism at
3000 ps when a wave propagates in a lossy bi-isotropic

medium.

In a bi-isotropic medium the angle between E and H is
determined by the Tellegen parametery. We have compu-
ted it for a medium with parameters . =1, =2, r= 3
ps, o= 27 10° rad/s and E=0. Three different values of y
were considered y=0./, y =0.2, and y =0.3. The excita-
tion was the same as in the previous simulation, Table 2
shows the theoretical and simulated values of this angle.
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Fig. 4 visualizes E and H {multiplied by Z,) in the case of
# =0.3 at the points 14z, and 3000 Az from the source,
this figure demonstrates simultancously the three basic
properties of waves propagating in general bi-isotropic
media, namely rotation of the polarization, circylar
dichroism and nomn-orthogonality of the clectric and
magnetic fields.

TABLE 2
Theoretical and simulated angles between E and H.
Tellegen Theoretical | Computed | Relative Error
Parameter Angle Angle in Percent
x=0.1 94.055 93.979 -0.08
x=0.2 98.130 97.985 +0.14
x=0.3 102.247 102.38 +0.12

77 Oplical Activity, Circular Dichroisin:and
777 No-Ortiiogononality of E andH, . .

Fig. 4. Rotation of the polarization, circular dichroism and

non-orthogonality of E and H at 3000 ps.

B. Transient Field Propagation in a General Dispersive
Bi-Isotropic Medium.

In the previous section we have validated the proposed
algorithm by comparing simulation results for monochro-
matic waves with frequency domain theoretical behavior
of waves in bi-isotropic media [1]. In order to demonstrate
the full transient capability of this time domain approach,
we have computed the propagation of high-frequency
pulses in a general dispersive bi-isotropic medium.

In this simulation the i-D computational domain was
the same than in the previous case. The bi-isotropic
medium had the following parameters: 4= 1, =2, y =
0, t=4ps, wy=2x 10° rad/s and £&=0, the conductivities
o, and o, were set t0 zero. At the point 4000 Az we
injected a group of three band-limited pulses with a center
frequency of 9 Gz, linearly polarized in x-direction. For
all frequencies within the spectrum of the pulses the real
part of the chirality is negative; therefore, the polarization
rotates clockwise. The rotation of the polarization of the
fields, extracted at 3000 ps, is shown in Fig. 5.

Fig. 5.  Polarization of the electric field at 3000 ps, it rotates

clockwise as the wave propagates through the medium.

V., CONCLUSION

We propose a novel time domain model of wave propa-
gatién in general dispersive bi-isotropic media, formulat-
ing the constitutive relationships by recursive convolution.
The traditional FDTD method and Yee cell have been
modified. Our new formulation involves updating electric
and magnetic ficlds in the same point and at the same time
step. While this model has been implemented and vali-
dated here for the 1-D case only, it can be extended to the
two- and three-dimensional cases. To our knowledge this
is thie first time domain formulation that allows full tran-
sient modeling of general dispersive bi-isotropic media,
including losses.

A series of numerical experiments have demonstrated
the -validity and accuracy of the proposed algorithm.
Simulated rotation angles agree with theoretical values
within typically less than one percent. Finally, numerical
experiments of transient fields in a general dispersive bi-
isotropic medium have been performed to demonstrate its
full transient capability.
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